Fractional cable models for spiny neuronal dendrites.
نویسندگان
چکیده
Cable equations with fractional order temporal operators are introduced to model electrotonic properties of spiny neuronal dendrites. These equations are derived from Nernst-Planck equations with fractional order operators to model the anomalous subdiffusion that arises from trapping properties of dendritic spines. The fractional cable models predict that postsynaptic potentials propagating along dendrites with larger spine densities can arrive at the soma faster and be sustained at higher levels over longer times. Calibration and validation of the models should provide new insight into the functional implications of altered neuronal spine densities, a hallmark of normal aging and many neurodegenerative disorders.
منابع مشابه
Fractional Cable Model for Signal Conduction in Spiny Neuronal Dendrites
The cable model is widely used in several fields of science to describe the propagation of signals. A relevant medical and biological example is the anomalous subdiffusion in spiny neuronal dendrites observed in several studies of the last decade. Anomalous subdiffusion can be modelled in several ways introducing some fractional component into the classical cable model. The Chauchy problem asso...
متن کاملNumerical simulation of fractional Cable equation of spiny neuronal dendrites
In this article, numerical study for the fractional Cable equation which is fundamental equations for modeling neuronal dynamics is introduced by using weighted average of finite difference methods. The stability analysis of the proposed methods is given by a recently proposed procedure similar to the standard John von Neumann stability analysis. A simple and an accurate stability criterion val...
متن کاملFractional Cable Equation Models for Anomalous Electrodiffusion in Nerve Cells: Finite Domain Solutions
In recent work we introduced fractional Nernst–Planck equations and related fractional cable equations to model electrodiffusion of ions in nerve cells with anomalous subdiffusion along and across the nerve cells. This work was motivated by many computational and experimental studies showing that anomalous diffusion is ubiquitous in biological systems with binding, crowding, or trapping. For ex...
متن کاملNonlinear Cable equation, Fractional differential equation, Radial point interpolation method, Meshless local Petrov – Galerkin, Stability analysis
The cable equation is one the most fundamental mathematical models in the neuroscience, which describes the electro-diffusion of ions in denderits. New findings indicate that the standard cable equation is inadequate for describing the process of electro-diffusion of ions. So, recently, the cable model has been modified based on the theory of fractional calculus. In this paper, the two dimensio...
متن کاملComb-like models for transport along spiny dendrites
We suggest a modification of a comb model to describe anomalous transport in spiny dendrites. Geometry of the comb structure consisting of a one-dimensional backbone and lateral branches makes it possible to describe anomalous diffusion, where dynamics inside fingers corresponds to spines, while the backbone describes diffusion along dendrites. The presented analysis establishes that the fracti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 100 12 شماره
صفحات -
تاریخ انتشار 2008